SHORT COMMUNICATIONS

Conformational Dependence of P=O Stretching Vibration Frequency in Six-membered Cyclic Phosphates

Masatsune Kainosho, Toshikatsu Morofushi and Asao Nakamura

Central Research Laboratories, Ajinomoto Co., Inc., Suzuki-cho, Kawasaki

(Received December 19, 1968)

It has been reported that the P=O stretching frequency $(\nu_{P=0})$ does not show any appreciable dependency on the conformational environments of 1,3,2-dioxaphosphorinane system,^{1,2)} although the $\nu_{S=0}$ in six-membered cyclic sulfites is quite sensitive to the conformations.³⁾ NMR and dipole moment studies⁴⁾ have shown that the P=O bond is mainly at the equatorial rather than the axial position. The same conformation is also confirmed by the X-ray diffraction method⁵⁾ in the crystalline state of several phosphates.

In this communication we wish to present the unequivocal evidence of conformational dependence of $\nu_{P=0}$, which is contrary to previous reports. The infrared spectra of 5,5-dimethyl-2-oxo-2-alkoxy-(or 2-aryloxy)-1,3,2-dioxaphosphorinanes were carefully examined both in solid phase (KBr tablet) and in carbon tetrachloride solution.

$$\begin{array}{c} O \\ O \\ O \\ O \end{array}$$

$$\begin{array}{c} O \\ O \\ O \end{array}$$

In solid phase, all of the compounds examined show a symmetrical single absorption at 1284—1305 cm⁻¹ which can be assigned to $\nu_{\rm P=0}$, but in solution an extra band at 1267—1298 cm⁻¹ followed by the strong absorption at 1308—1322 cm⁻¹ (see Table 1). These bands are assignable to $\nu_{\rm P=0}$ because they were shown to shift by the addtion

TABLE 1.

Compound*	ν _{P=0} cm ⁻¹		
	KBr	$\mathrm{CCl_4}$ sol.	+Phenol
2-Methoxy- (I)	1287	1313 1272	1285 1234
2-Ethoxy- (II)	**	1309 1267	1283 1230
2-Isopropoxy- (III)	1284	1308 1268	1277 1231
2-p-Anisyl- (IV)	1297	1322 1298	1294 1228
2-(3,5-Dimethyl)phenoxy-(V)	1305	1322 1294	1290 1228
2-(2,6-Dimethyl)phenoxy- (VI)	1304	1319 1287	1294 1227
2-(2,6-Di- <i>t</i> -butyl-4-methyl)- phenoxy- (VII		1314 1286	1288 1230

- Preparation of these compounds will be described elsewhere.
- ** Liquid at room temperature.

of phenol possibly due to the formation of hydrogen bonding. The origin of this phenomenon (i. e. two $\nu_{P=0}$'s) is attributable to the conformational equilibrium, $\alpha \leftrightarrow \beta$. With I—V, the relative intensity of the higher frequency bands are much stronger than the lower ones, indicating that the former are equatorial and the latter are axial $\nu_{P=0}$. This assignment is compatible with the general trend that the axial stretching frequency is lower than the equatorial one.

Clearer examples are supplied by VI and VII, in which β -conformation may be expected to have a strong 1,3-diaxial repulsion between the ring hydrogens and the substituents at aryloxy groups. Thus, the intensity ratios of two bands ($\nu_{P=0_{eq}}$: $\nu_{P=0_{ax}}$) are roughly estimated as 4:1 and 1:1 for VI and VII, respectively. These ratios are in agreement with the NMR results which will be published elsewhere.

¹⁾ R. S. Edmundson, Tetrahedron, 20, 2781 (1964).

R. A. Y. Jones and A. Y. Katritzky, J. Chem. Soc., 1960, 4376.

³⁾ H. F. Van Woerden and E. Havinga, Rec. Trav. Chim. Pays-Bas., **86**, 341 (1967).

⁴⁾ M. Kainosho and T. Shimozawa, Tetrahedron Letters, in press.

⁵⁾ W. Murayama and M. Kainosho, This Bulletin, in press, and references cited therein.